

 AN10042
 ISP176x Linux Programming Guide
 Rev. 01 — 7 April 2005 Application note

Document information

Info Content

Keywords isp1760, isp1761, universal serial bus, usb, peripheral controller, host controller,
on-the-go controller, hal

Abstract This document provides information on the interfaces and data structures
required to use the ISP176x Host Controller, OTG Controller and Peripheral
Controller driver layers for the Linux operating system.
Remark: The ISP176x denotes the ISP1760 and ISP1761 Hi-Speed Universal
Serial Bus controllers, and any future derivatives.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 2 of 38

Contact information
For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com

Revision history

Rev Date Description

01 20050407 First release.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 3 of 38

Remark: The ISP176x denotes the ISP1760 and ISP1761 Hi-Speed Universal Serial Bus
Controllers, and any future derivatives.

1. Introduction
The Universal Serial Bus (USB) Host Controller has become an integral part of most
embedded systems in recent years. Usually, the Host Controller is based on the PCI card
that is targeted for PC-based architecture. Embedded systems that are not equipped with
such a controller bus can benefit from the Philips embedded Host Controller.

In addition to the host functionality, some embedded systems need the peripheral
functionality. Such embedded systems must contain a USB Host Controller and a USB
Peripheral Controller as part of the On-The-Go (OTG) implementation. OTG is a
supplement to Universal Serial Bus Specification Rev. 2.0 that allows access to the USB
host and the USB peripheral through a single physical connector. The OTG protocol
entails switching between the host and peripheral functionalities.

The ISP1760 is a USB Host Controller. The ISP1761 is a USB OTG Controller—USB
host and USB peripheral. The ISP1760 has three host ports and the ISP1761 has two
host ports and an OTG port that can be used as either a host or a peripheral.

This document provides information on the interfaces and data structures required to use
the ISP176x Host Controller, OTG Controller and Peripheral Controller driver layers for
the Linux operating system.

Fig 1 shows the interfacing of the ISP176x blocks to an operating system.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 4 of 38

Fig 1. ISP176x system interface.

1.1 ISP176x peripheral hardware
The ISP176x Peripheral Controller includes the ISP1582 and ISP176x peripheral
function. Hardware Access Layer can run on the Peripheral Controller hardware.

Remark: In this document, the ISP176x Peripheral Controller includes the ISP1582,
unless mentioned otherwise. The ISP1582 hardware can be on any platform with any
bus interface that is defined for the ISP176x.

1.2 ISP176x host hardware
The ISP176x provides the host-capability function. The ISP176x contains an OTG state
machine running within. If the device connected to the port is dual-role capable, then the
device negotiates the role and acts accordingly under the direction of the software.

HARDWARE ROOT HUB

ISP176x HARDWARE ACCESS LAYER

ISP176x HOST
CONTROLLER DRIVER

ISP176x OTG
CONTROLLER

DRIVER

ISP176x PERIPHERAL
CONTROLLER DRIVER

OPERATING
SYSTEM

OPERATING
SYSTEM

I/O INTERFACE
ISP176x HARDWARE

TT HUB WITH THREE PORTS

OTG PORTHIGH-SPEED
USB PORT

HIGH-SPEED
USB PORT

CORE USBD CLASS DRIVER AND OTHER OPERATING SYSTEM DEPENDENT UNITS

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 5 of 38

1.3 ISP176x Hardware Access Layer
The ISP176x Hardware Access Layer provides functions to access the ISP176x
hardware by using the NOR flash interface and OS platform-related functions. This layer
depends on the platform and the NOR flash interface hardware. Port this layer,
depending on the platform used. This document provides information on interfacing the
ISP176x Hardware Access Layer to other drivers.

1.4 ISP176x Host Controller Driver
The ISP176x Host Controller Driver (HCD) transfers data on the USB bus for the USB
devices connected to the downstream facing port of the ISP176x. This layer must
interface to the Hardware Access Layer to configure the ISP176x hardware and the Host
Controller hardware access.

1.5 ISP176x Peripheral Controller Driver
The ISP176x Peripheral Controller Driver transfers data over the USB cable to the
connected USB host through the upstream facing port of the ISP176x.

1.6 ISP176x OTG Controller driver
The OTG driver maintains the OTG Finite State Machine (FSM) by accessing and
controlling the OTG controller registers in the ISP176x through the Hardware Access
Layer.

2. Hardware Access Layer
The Hardware Access Layer provides functions to access the host hardware and the OS
platform-related functions. The implementer must port this layer based on the platform.

2.1 Starting the Host Controller
The following steps are required to set the Host Controller into operational mode.
1. Reset the Host Controller using the following code and wait for 50 ms to stabilize.

HostWriteReg_32Bit(0x030C /*REG_RESETDEVICE*/, 0x00000002UL);
Delay(50ms);

2. Set the Host Controller into 32-bit bus mode and 16-bit bus mode as follows:
HostWriteReg_32Bit(0x0300/*REG_HWMODECTRL*/,0x00000000); for 16-bit mode
HostWriteReg_32Bit(0x0300/*REG_HWMODECTRL*/,0x00000100); for 32-bit
Mode. The HC is in 32-bit Bus mode at power-on reset.

3. You can now write to and read from the Scratch register to verify that the ISP176x
I/O operation is working properly.
HostWriteReg_32Bit(0x0308 /*REG_HCSCRATCH */, uData2Write);
/*Read Back the Scratch Values */
HostReadReg_32Bit(0x0308 /*REG_HCSCRATCH */, uData2Write);
if(uData2Write!=uData2Read)
{ }

4. Write appropriate values to the following registers to finally set the Host Controller
into operational mode.

HostWriteReg_32Bit(0x0134 /*REG_ISOPTD_SKIP */,0xFFFFFFFF);
HostWriteReg_32Bit(0x0144 /* REG_INTPTD_SKIP */,0xFFFFFFFF);
HostWriteReg_32Bit(0x0154 /* REG_ATLPTD_SKIP */,0xFFFFFFFF);

HostWriteReg_32Bit(0x0130 /* REG_ISOPTD_DONE */,~0xFFFFFFFF);

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 6 of 38

HostWriteReg_32Bit(0x0140 /* REG_INTPTD_DONE */,~0xFFFFFFFF);
HostWriteReg_32Bit(0x0150 /* REG_ATLPTD_DONE */,~0xFFFFFFFF);

HostWriteReg_32Bit(0x0028 /* REG_USBINTR */,0x0);
HostWriteReg_32Bit(0x031C /* REG_INTIRQMASKOR */,0x0);
HostWriteReg_32Bit(0x0328 /* REG_INTIRQMASKAND */,0x0);
HostWriteReg_32Bit(0x0320 /* REG_ATLIRQMASKOR */,0x0);
HostWriteReg_32Bit(0x032C /* REG_ATLIRQMASKAND */,0x0);
HostWriteReg_32Bit(0x0318 /* REG_ISOIRQMASKOR */,0x0);
HostWriteReg_32Bit(0x0324 /* REG_ISOIRQMASKAND */,0x0);
HostWriteReg_32Bit(0x0030 /* REG_CTLDSSEGMENT */,0);
/* Enable the Port, before enable, reset and power up and enable the port */
HostWriteReg_32Bit(0x0064 /* REG_PORTSC1 */,0x100); /*Reset */
Delay(20ms);/* Port Reset delay */

HostWriteReg_32Bit(0x0064 /* REG_PORTSC1 */,0x1000); /*Power */
HostWriteReg_32Bit(0x0064 /* REG_PORTSC1 */,0x04); /*Enable Port */

HostWriteReg_32Bit(0x0314 /* REG_HCINTRENBL */,0x000001B1); /*Enable int for ATL
PTD done,INTL PTD done, SOF and HC Suspend */

HostReadReg_32Bit(0x0300 /* REG_HWMODECTRL */, &uData2Read);
HostWriteReg_32Bit(0x0300/*REG_HWMODECTRL*/,(uData2Read|0x61));

/*Enable the Global Int,Dreq Polarity */
HostWriteReg_32Bit(0x0060 /* REG_CONFIGFLAG */,1);

The Host Controller will now start to send SOFs on the bus and SOF interrupts will start
appearing on the interrupt pin of the Host Controller. For details on these registers and
their values, refer to the ISP1760 and ISP1761 data sheets.

2.2 Module management interface
This interfaces to the operating system. It is called when the ISP176x HCD is loaded to
or unloaded from the kernel.
The following functional interface is based on PCI x86 platform or Accelent Linux
platform. The functional interface can, however, be modified, depending on the operating
system.

2.3 isp176x_hal_module_init
This function initializes the ISP176x hardware access driver module. The Linux kernel
module manager calls this function.
int __init isp176x_hal_module_init (void)

Parameters: None.
Return value:

0: The ISP176x hardware access driver kernel module is successfully
completed.
<0: The ISP176x kernel module initialization has failed.

2.3.1 isp176x_hal_module_cleanup
This function deinitializes the ISP176x hardware access driver module. The Linux kernel
module manager calls this function during unloading of this module.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 7 of 38

void __exit isp1761_hal_module_cleanup (void)

Parameters: None.
Return value: None.

2.4 ISP176x Controller Driver interface
This interfaces to the ISP176x controller drivers: host, peripheral, and OTG. It includes
the following interfaces:

• Driver registration interface
• Resource Management interface
• I/O access interface
• Kernel tracing interface.

These interfaces are explained in the following sections.

2.5 Driver registration interface
2.5.1 isp176x_register_driver

This function registers driver access functions to the ISP176x Hardware Access Layer
driver.
int isp176x_register_driver(struct isp1761_driver *drv)

Parameters:
drv: Pointer to the ISP176x driver data structure (struct isp176x_driver). The
structure has the following elements.
struct isp176x_driver {

 struct list_head node;
 char *name;
 unsigned long index;
 int (*probe)(struct isp176x_dev *dev);
 void (*remove)(struct isp176x_dev *dev);
 void (*suspend)(struct isp176x_dev *dev);
 void (*resume)(struct isp176x_dev *dev);
} isp_176x_driver_t;

node: Linked list node. Managed by the ISP176x Hardware Access Layer.
name: Name of the driver registering to the Hardware Access Layer.
index: Driver type. Its values are given in Table 1:.

Table 1: Driver type
Value Description

ISP176x_HC USB Host Controller device

ISP176x_DC USB Peripheral Controller device

ISP176x_OTG USB OTG Controller device

probe: This probe function is called by the Hardware Access Layer when it finds
the hardware of the type specified by the index. The input parameters to this
function are the ISP176x device data structure (struct isp176x_dev).
remove: This is a removal function. The Hardware Access Layer calls this
function when it finds that the hardware is unavailable or inactive. The input

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 8 of 38

parameters to this function are the ISP176x device data structure (struct
isp176x_dev).
suspend: This function is called by the Hardware Access Layer when it finds that
the hardware must be suspended. The input parameters to this function are the
ISP176x device data structure (struct isp176x_dev). This function interface is
applicable only when power management is enabled.
resume: This function is called by the Hardware Access Layer when it finds that
the hardware must be resumed from the suspended state. The input parameters
to this function are the ISP176x device data structure (struct isp176x_dev). This
function interface is applicable only when power management is enabled.

Return value:
0 Successful registration of the driver with the Hardware Access Layer.
< 0 OTG driver registration has failed.

2.5.2 isp176x_unregister_driver
This function deregisters controller drivers from the ISP176x Hardware Access Layer.
void isp176x_unregister_driver(struct isp176x_driver *drv)

Parameters:
drv: Pointer to the controller driver registration data structure.

Return value: None.

2.6 Resource management interface
These functions are usually required for the bus, such as PCI, to acquire the memory
region and ports from the bus.

2.6.1 isp176x_check_io_region
This function checks whether the I/O port region is free. The I/O region that will be
checked is specified in the input parameter data structure.
int isp176x_check_io_region(struct isp176x_dev *dev)

Parameters:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).

Return value:
0 I/O region of the specified device is free.
< 0 I/O region of the specified device is already in use.

2.6.2 isp176x_request_io_region
This function allocates I/O port resources to the specified controller device.
struct resource* isp176x_request_io_region(struct isp176x_dev *dev)

Parameters:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).

Return value:
NULL: Resource allocation has failed.
Others: Resource allocation was successful (pointer to struct resource defined
by the Linux kernel).

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 9 of 38

2.6.3 isp176x_release_io_region
This function deallocates I/O port resources of the specified controller device.
void isp176x_release_io_region(struct isp176x_dev *dev)

Parameters:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).

Return value: None.

2.6.4 isp176x_request_irq
This function registers an Interrupt Service Routine (ISR) to the interrupt line. The
interrupt line is specified in the device data structure elements.
int isp176x_request_irq(
void (*handler)(struct isp176x_dev dev*, void *isr_data),

struct isp176x_dev *dev, void *isr_data);

Parameters:
handler: This function is called whenever the Hardware Access Layer receives an
interrupt on the device interrupt line. The input parameters to this function are the
ISP176x device data structure (dev) and the controller driver ISR data (isr_data).
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).
isr_data: Pointer to the controller data identifier. This is an input parameter when
the ISR is called.

Return value:
0 ISR registration is successful.
<0 ISR registration has failed.

2.6.5 isp176x_free_irq
This function frees the ISR from the interrupt line of the device.
void isp176x_free_irq(struct isp176x_dev *dev,
void *isr_data)

Parameters:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).
isr_data: Pointer to the controller data (identifier).

Return value: None.

2.7 I/O access Interface
The functions described in the following sections access the ISP176x hardware and are
not exported to host, peripheral or OTG stack.

2.7.1 isp176x_reg_read32
This function reads the 32-bit ISP176x register.
__u32 isp176x_reg_read32(struct isp176x_dev *dev, __u16 reg)

Parameters:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).
reg: Register index of the ISP176x device.

Return value:
32-bit register content.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 10 of 38

2.7.2 isp176x_read16
This function reads the 16-bit ISP176x data.
__u16 isp1761_reg_read16(struct isp176x_dev *dev)

Parameters:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).

Return value:
16-bit data content.

2.7.3 isp176x_reg_write32
This function writes to the 32-bit ISP176x register.
void isp176x_reg_write16(struct isp176x_dev *dev, __u32 reg, __u16 data)

Parameters:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).
reg: Register index of the ISP176x device.
data: Data to be written to the ISP176x.

Return value: None.

2.7.4 isp176x_reg_write16
This function writes to the 16-bit ISP176x register.
void isp176x_reg_write16(struct isp176x_dev *dev, __u16 reg, __u16 data)

Parameters:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).
reg: Register index of the ISP176x device.
data: Data to be written to the ISP176x.

Return value: None.

2.7.5 isp176x_read16
This function reads the memory from the ISP176x in the 16-bit format. The following
sample code is for access in PIO mode.
__u16 isp176x_reg_read16(struct isp176x_dev *dev)

Parameter:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).

Return value:
16-bit data content.

2.7.6 isp176x_read32
This function reads the memory from the ISP176x in the 16-bit format. The following
sample code is for access in PIO mode.
__u32 isp176x_reg_read16(struct isp176x_dev *dev)

Parameter:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).

Return value:
32-bit data content.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 11 of 38

2.7.7 isp176x_write16
This function writes to the memory from the ISP176x in the 16-bit format. The following
sample code is for access in PIO mode.
__u16 isp176x_reg_read16(struct isp176x_dev *dev)

Parameter:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).

Return value: None.

2.7.8 isp176x_write32
This function writes to the memory from the ISP176x in the 16-bit format. The following
sample code is for access in PIO mode.
__u16 isp176x_reg_read16(struct isp176x_dev *dev)

Parameter:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev).

Return value: None.

2.7.9 isp176x_Memory_read16_DMA
This function writes to the memory from the ISP176x in 16-bit format DMA mode.
BOOL isp176x_reg_read16(struct isp1761_dev *dev)

Parameter:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev) is filled
with the memory descriptor buffer supplied.

Return value:
Operation successful = TRUE.
Operation failed = FALSE.

2.7.10 isp176x_Memory _read32_DMA
This function writes to the memory from the ISP176x in 16-bit format DMA mode.
BOOL isp176x_reg_read16(struct isp176x_dev *dev)

Parameter:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev) is filled
with the memory descriptor buffer supplied.

Return value:
Operation successful = TRUE.
Operation failed = FALSE.

2.7.11 isp176x_Memory _write16_DMA
This function writes to the memory from the ISP176x in 16-bit format DMA mode.
BOOL isp176x_reg_read16(struct isp176x_dev *dev)

Parameter:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev) filled with
the memory descriptor buffer supplied.

Return value:
Operation successful = TRUE.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 12 of 38

Operation failed = FALSE.

2.7.12 isp176x_Memory _write16_DMA
This function writes to the memory from the ISP176x in 32-bit format DMA mode.
BOOL isp176x_reg_read16(struct isp1761_dev *dev)

Parameter:
dev: Pointer to the ISP176x device data structure (struct isp176x_dev) filled with
the memory descriptor buffer supplied.

Return value:
Operation successful = TRUE.
Operation failed = FALSE.

2.8 Kernel tracing interface
2.8.1 func_debug

This is a macro interface to print information at function level. Controller drivers call this
function to print function entry traces.
void func_debug(args)

Parameters:
args: The arguments of printk.

Return value: None.

2.8.2 detail_debug
This is a macro interface to print information at detailed-level trace. Controller drivers call
this function to print function entry traces, as well as detailed-level information trace.
void detail_debug(args)

Parameters:
The arguments of printk.

Return value: None.

2.9 Common structures
2.9.1 struct isp176x_dev

struct isp176x_dev {
 struct isp176x_driver *driver;
 void *driver_data;
 unsigned char index;
 unsigned int irq;
 void (*handler)(struct isp176x_dev *, void *);
 void *isr_data;
 unsigned long int_reg;
 unsigned long alt_int_reg;
 struct resource *io_res;
 unsigned long io_base;
 unsigned long io_len;
 unsigned long io_data;
 unsigned long io_cmd;
 unsigned short chip_id;
 char name[80];

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 13 of 38

 void * dma_buff
 int dma_chan
 int active;
}isp176x_dev_t ;

Parameters:
driver: Pointer to the driver data structure.
driver_data: Driver private data.
index: Controller type. The values are defined in the preceding code.
irq: Interrupt line allocated for this controller.
handler: Interrupt Service Routine of this handler used by the ISP176x
Hardware Access Layer.
isr_data: Interrupt Service Routine parameter.
int_req: Interrupt register of the controller.
alt_int_reg: Alternate Interrupt register for the Host Controller.
io_res: Pointer to the I/O resources structure defined by the Linux kernel.
io_base: I/O access start base.
io_len: I/O access total length.
io_data: Data register I/O port.
io_cmd: Command register I/O port.
chip_id: Controller chip ID.
dma_buff: Buffer for the DMA transfer.
dma_chan: DMA channel number resource.
name: Peripheral Controller name.
active: Whether the device is active. 1—active; 0—inactive.

3. Host Controller interface
The HCD (HCD) transfers data to the connected USB devices and manages the Root
Hub ports. The OTG driver controls activities on the OTG port by using the HCD port
control interface.

3.1 Module management
This interfaces to the operating system and is called when the ISP176x HCD is loaded to
or unloaded from the kernel.

The following functional interface is based on the PCI x86 platform or the Accelent Linux
platform, and can be modified, depending on the operating system.

3.1.1 phci_module_init
This function initializes the ISP176x hardware access driver module. The Linux kernel
module manager calls this function.
int __init phci_module_init (void)

Parameters: None.
Return value:

0 The ISP176x hardware access driver kernel module is successfully
completed.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 14 of 38

< 0 The ISP176x kernel module initialization has failed.

3.1.2 phci_module_cleanup
This function deinitializes the ISP176x hardware access driver module. The Linux kernel
module manager calls this function during the unloading of this module.
void __exit phci_module_cleanup(void)

Parameters: None.
Return value: None.

3.2 ISP176x host management service
This interfaces to the ISP176x HCDs. It has the following types of interfaces:

• Host Controller basics
• Host Controller routines
• Memory management interface
• Root hub and internal hub management

• Data transfer interface.
The following sections explain each of these interfaces in detail.

3.2.1 Host controller basics
Fig 2 shows a portion of the ISP176x Host Controller conceptual block diagram.

The Host Controller basics consists of the following:
• Host—Hi-Speed USB host
• Peripheral—Hi-Speed USB peripheral
• Hi-Speed USB hub with Transaction Translator (TT)1
• USB OTG.

1. Patent pending: TT under host.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 15 of 38

MICROPROCESSOR

REGISTERS

MEMORY
MAPPED

INPUT/OUTPUT,
MEMORY

MANAGEMENT
UNIT, SLAVE DMA

CONTROLLER
AND INTERRUPT

CONTROL

USB HI-SPEED
HOST AND TT
(FULL-SPEED

AND LOW-
SPEED)

HI-SPEED USB
HUB WITH TT

MUX

HI-SPEED
USB

DEVICE

D[15:0]/
D[31:0]

A[17:1]

CS_N

RD_N

WR_N

DC_IRQ

HC_IRQ

HC_DREQ

DC_DREQ

DC_IRQ

HC_DACK

DC_DACK ARBITER

PTD1

PTD2

…

PTD32

PTD1

PTD2

...

PTD32

PTD1

PTD2

...

PTD32

PAYLOAD

...

PAYLOAD

ISOCHRONOUS

INTERRUPT

ASYNC

PAYLOAD

240 MB/s

63 kB

address
data (64 bits)

high-speed
USB port

high-speed
USB port

high-speed
USB port

Fig 2. Conceptual block diagram of the Host Controller.

3.2.1.1 Host—Hi-Speed USB host
The transfers that arrive from the USB core driver in the form of the USB Request Block
(URB) with the user buffer are scheduled over the USB bus in a round-robin method. The
standard EHCI driver can be modified, without changing the code.

The main reason for not changing the EHCI driver code is to use the horizontal and
vertical traversal rules set by the EHCI driver. To transfer the user buffer, EHCI uses the
hardware schedule list that is traversed by the hardware and scheduled over the USB
bus.

The ISP176x uses the software driven interrupt-based scheduler that pulls the TD out
from the EHCI scheduler, schedules it, and completes the required schedule transaction.
The transaction scheduler also removes the transactions from the memory once
completed so that new transactions can be scheduled.

You can also use a wrapper around the TD; and map, link and traverse the enhanced
Philips Transfer Descriptor2 (PTD) used by the ISP176x.

Scheduling transfer over the ISP176x means scheduling the EHCI transfer over the
shared memory. Memory schedules are organized by the software and filled in the
shared memory of the ISP176x for the hardware to execute.

The Host Controller memory is divided into two parts: data payload area and header
area. The data payload contains the data to be transferred. The header contains the
PTD.

The ISP176x traverses the memory header using the linear method. This method of
scheduling is of fixed priority, and achieves a more simpler and predicted traversal of the
schedule for the Host Controller. A PTD is dynamically added and removed from the
endpoint list by using the Skip bit to inform the Host Controller not to access the required
transfer. The driver uses the Done bit to check that the transfer is complete.

2. Patent pending: PTD protocol.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 16 of 38

SKIP

SKIP

SKIP

SKIP

SKIP

DONE

DONE

DONE

DONE

iTD 0

iTD 1

iTD 2

iTD 3

DONE

PAYLOAD

FIXED DATA LENGTH

LAST BIT

SKIP

SKIP

SKIP

SKIP

SKIP

DONE

DONE

DONE

DONE

qTD 0

qTD 1

qTD 2

qTD 3

DONE qTD MAX

LAST BIT

SKIP

SKIP

SKIP

SKIP

SKIP

DONE

DONE

DONE

DONE

qTD 0

qTD 1

qTD 2

qTD 3

DONE qTD MAX

LAST BIT

PAYLOAD

FIXED DATA LENGTH

Host Controller state
machine enters here

PAYLOAD

FIXED DATA LENGTH

iTD MAX

TDs

BULK AND CONTROL
TD SCHEDULE

INTERRUPT
TD SCHEDULE

ISO TD schedule

Fig 3. ISP176x Finite State Machine.

The ISP176x controller executes transactions for devices by using a simple and shared-
memory schedule. This memory schedule is an extension to the EHCI memory schedule.

EHCI data structures are optimized for the bus master operation that is managed by the
hardware state machine. New data enhanced PTD structures are the translations of the
EHCI data structures that are optimized for the ISP176x. This is because the ISP176x is
a slave Host Controller and has no bus master capability. The EHCI data structures are
designed to provide the maximum flexibility required by USB, minimize memory traffic,
and hardware and software complexity.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 17 of 38

PERIODIC
LIST

TD TD

QH QH

OVERLAY TD

OVERLAY TDOVERLAY TD

ISP176x SCHEDULE
PROCESS OR THREAD

PTD SCHEDULE
FOR THE
ISP176x

add schedule
(thread or process)

periodic
schedule

asynchronous
schedule

Fig 4. Scheduling a PTD.

The ISP176x controller executes transactions for devices by using a simple and shared
memory schedule. The schedule consists of data structures that are organized into three
lists:

• ISO: Isochronous transfer schedule list
• INTL: Interrupt transfer list
• ATL: Asynchronous transfer list for the control and bulk transfers.

The system software maintains two schedules for the Host Controller: periodic and
asynchronous. The root of the periodic schedule is the PERIODICLISTBASE register,
which is the physical memory base address of the periodic frame list. The periodic frame
list is an array memory pointer. The objects referenced from the frame list must be valid
schedule data structures. An asynchronous list base is also a common list of queue head
(endpoint) that is served in a schedule. This endpoint data structure is linked to the EHCI
transfer descriptor that is the valid schedule (queue TD).

The ISP176x has a maximum of 32 ISO, 32 INTL and 32 ATL TDs. These TDs are used
as a channel to transfer data from the shared memory to the USB bus. These channels
are allocated and deallocated on receiving the transfer (URB) from the core USB driver.

On allocating a channel, a queue-TD is converted into a PTD while scheduling the
transfer to the ISP176x shared memory, along with the payload. A single transfer can
allocate multiple channels.

Multiple transfers are scheduled to the shared memory for various endpoints by
traversing the next link pointer provided by the EHCI data structure, until it reaches the
Terminate bit in each microframe. If the schedule is enabled, then the Host Controller
executes the ISO schedule, followed by the INTL schedule, and then the ATL schedule.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 18 of 38

The EHCI periodic and asynchronous lists are traversed by the software according to the
EHCI traversal rule and are executed from the asynchronous schedule only after it
encounters the end of the periodic schedule. The Host Controller traverses the ISO, INTL
and ATL schedules. It fetches the element and begins traversing the graph of linked
schedule data structures.

The last bit identifies the end of the schedule for each transfer type, indicating that the
remaining channels are empty. Once this transition is made, the Host Controller executes
from the next transfer descriptor in the schedule, till the end of the microframe.

The completion of a transfer is indicated to the software by the interrupt, which can be
grouped under the various PTDs by using the AND or OR registers that are available for
each schedule type—ISO, INTL and ATL. These registers are simple logic registers to
decide the individual and group PTDs that can interrupt the CPU for a schedule, when
the logical condition of the done bit is true in the shared memory, which completes an
interrupt.

There are four types of interrupts in the ISP176x: ISO, INTL, ATL and SOF. The latency
can be programmed in multiples of µSOF (125 µs).

A static TD schedules inside the ISP176x shared memory, allowing the next_TD
mechanism that will enable the HCD to schedule multiple TDs of single endpoint type
and reduce the interrupt to the CPU. This is achieved by a small modification to the
traversal rule as shown in Fig 5.

ENDPOINT 1 TD 1

ENDPOINT 1 TD 2

ENDPOINT 1 TD 3

ENDPOINT 1 TD 4

ENDPOINT 1 TD 5

ENDPOINT 2

ENDPOINT 2

ENDPOINT 2

ENDPOINT 2

ENDPOINT 2

ENDPOINT 3

ENDPOINT 3

ENDPOINT 3

ENDPOINT 3

ENDPOINT 3

UNALLOCATED TD

UNALLOCATED TD

UNALLOCATED TD

UNALLOCATED TD

UNALLOCATED TD

UNALLOCATED TD

UNALLOCATED TD

UNALLOCATED TD

UNALLOCATED TD

TD POOL 256 B

TD POOL I B

TD POOL 2 B

TD POOL 4 B

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

Fig 5. Endpoint traversal.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 19 of 38

The next_TD traversal rules for the hardware ISP176x are:
1. Start ATL header traversal.
2. If the current TD is active and not done, perform the transaction.
3. Follow the next link pointer.
4. If TD is not active and done, jump to the next TD.
5. If the next link pointer is NULL, it means the end of the traversal.

PTD DONE?

EXECUTE
THE PTD

INCREMENT
THE PTD

EXECUTE
THE PTD

END THE
SCHEDULE

END THE
SCHEDULE

null pointer(1)

004aaa585

START PTD
SCHEDULE

follow the next link pointer follow the next link pointer

horizontal
link pointer

vertical
link pointer

no yes

(1) The NULL pointer terminates. Goes to the next link.

Fig 6. NextPTD traversal rule.

3.2.1.2 Peripheral—Hi-Speed USB peripheral
The ISP176x Hi-Speed USB peripheral has the following features.

• Complete Hi-Speed USB peripheral.
• Separate endpoint memory.
• 1 control, 7 IN and 7 OUT endpoint that can be configured to bulk, interrupt and

isochronous.
• Maximum endpoint memory is 1 kB.
• Command-data architecture for the data transfer.
• DMA transfer: 16-bit or 32-bit.
• Interrupt for every validated endpoint.

3.2.1.3 Hi-Speed USB hub with the TT
A Hi-Speed USB hub is always connected to the default root-hub port 0, which is an
internal port. This hub is Hi-Speed USB root-hub, including the TT. After power-on reset,
the Host Controller initializes the root hub and polls, until a new connection is found. The
internal hub in enumerated and the polling on the internal root-hub is stopped according

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 20 of 38

to the USB 2.0 specification. On enumeration, it releases the three high-speed USB
ports. You can connect the high-speed, full-speed and low-speed devices to this port.
Port 0 of the Hi-Speed USB hub is gated through the multiplex for OTG purposes.

3.2.1.4 USB OTG
OTG enables the ISP176x to switch between host and peripheral. For details, see
Section 4.

3.2.2 Host Controller routines
The TDs described in the following sections provide the basic routines to initialize and
manage the Host Controller.

3.2.2.1 Phci_hcd_start

This function is used to initialize the Host Controller and set it in operation mode. It is
recommended that you acquire a spin-lock after initialization so that no other function can
preempt the process.
static int phci_hcd_start(phci_hcd *hcd)

Before the controller is set into operational mode, the following three operations are
performed to set the Host Controller in reset mode and to enable interrupts.
1. Reset the device. phci_hcd_reset(hcd); see Section 3.2.2.2.
2. Enable the interrupt. phci_hcd_enable_interrupts(hcd) Section 3.2.2.3.
3. Initialize map buffers. phci_hcd_init_map_buffers(hcd) Section 3.2.2.4.

The HCD sets the last PTD bits of all the schedule types by writing 00000001h to
HC_ISO_PTD_LASTPTD_REG (138h), HC_INT_PTD_LASTPTD_REG (148h) and
HC_ATL_PTD_LASTPTD_REG (158h), indicating that the first TD is the last TD.
 /*set last maps, for iso its only 1, else 32 tds bitmap*/
 isp1762_reg_write32(hcd->dev, hcd->regs.atltdlastmap,0x80000000);
 isp1762_reg_write32(hcd->dev, hcd->regs.inttdlastmap, 0x80000000);
 isp1762_reg_write32(hcd->dev, hcd->regs.isotdlastmap, 0x00000001);

The HCD allocates a new dummy QH that is always linked to the asynchronous base
address, according to the standard procedure. Initialize this QH and link it to the base
address. The QH must halt the schedule to reclaim the bandwidth.

qh = phci_hcd_qh_alloc(hcd);
 hcd->async = qh;
 hcd->async->qh_next.qh = 0;
 hcd->async->hw_next = QH_NEXT (hcd->async->qh_dma);
 hcd->async->hw_info1 = cpu_to_le32 (QH_HEAD);
 hcd->async->hw_token = cpu_to_le32 (QTD_STS_HALT);
 hcd->async->hw_qtd_next = EHCI_LIST_END;
 hcd->async->qh_state = QH_STATE_LINKED;

ISO transfers must not be active. The Host Controller data structure keeps track of the
frame number. Initialize the frame number to –1 and the periodic schedule to 0 to
indicate that ISO transfers are nonactive.
 /*iso transfers are not active*/
 hcd->next_uframe = -1;
 hcd->periodic_sched = 0;

Initialize periodic list base addresses and periodic list heads with the appropriate values,
depending on your program. Set the HCD state in the HCD structure to ready but do not
process anything yet. Initialize the timer for the root hub polling. Poll until the device is

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 21 of 38

connected to the internal root hub using the appropriate method, depending on the USB
core and the operating system. Now start enumerating the root hub, which is a hub that
is controlled through register PORTSC1. This register also shows the status of the port.

Complete the Host Controller start routine by performing the following:
 /*set the state of the host to ready */
 hcd->state = USB_STATE_READY;

This completes the Host Controller initialization. The SOF is now on the internal root hub
port. This allows to detect the port status change with a connection status change,
allowing the internal hub to enumerate.

3.2.2.2 phci_hcd_reset(phci_hcd hcd)

The process start with the Host Controller reset: by writing to the RESET_HC bit in the
HC_RESET_REG (030Ch) and waiting for 250 ms to complete the Host Controller reset.
The Host Controller reset is indicated by setting bit RESET_HC in the Command register.

3.2.2.3 phci_hcd_enable_interrupts(phci_hcd hcd)
The ISP176x has four types of group interrupts and mechanisms:

• ATL asynchronous transfer group complete interrupt
• INTL interrupt periodic transfer group complete interrupt
• ITL isochronous periodic transfer group complete interrupt
• SOF start-of-frame group complete interrupt. Process all the schedules—ATL, ITL

and INTL.

An interrupt indicates a transfer completion. To control an interrupt and relate to the
individual transfer, the Host Controller provides registers—DONE_MAP, SKIP_MAP,
INTERRUPT_OR and INTERRUPT_AND—to indicate the status of the transfer. These
registers are hardwired to the address. The maximum transfer that can be scheduled to
the ISP176x is fixed as 32 transfers per memory bank. These registers are per transfer
type, except for the SOF interrupt that uses the respective registers while processing the
type bank for the respective memory block.

This routine enables the required interrupt by programming HC_INTERRUPT_REG
(310h).

This routine also programs HC_INT_THRESHOLD_REG (340h) that decides the
maximum latency, the pulse width of the interrupt, the count in number of clocks, and the
latency in number of µSOFs.

3.2.2.4 phci_hcd_init_map_buffers(phci_hcd hcd)

Map buffers are used for transfer management to transfer data between the EHCI TD
and the embedded Host Controller specific PTD. To globally manage the transfer, map
from TD to PTD and maintain the status of active channels.

This structure maintains the global position in the ISP176x buffer.
typedef struct td_ptd_map_buff {
 u8 buffer_type; /*Buffertype: BUFF_TYPE_ATL/INTL/ISTL*/
 u8 active_ptds; /* number of active td's in the buffer */
 u8 total_ptds; /* num of td's in the buffer (active + removed + skip) */
 u8 max_ptds; /* Maximum number of ptd's(32) this buffer can withstand */
 u32 active_ptd_bitmap; /* Active PTD's bitmap */
 u32 pending_ptd_bitmap; /* skip PTD's bitmap */
 td_ptd_map_t map_list[TD_PTD_MAX_BUFF_TDS];/* td_ptd_map list */
}

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 22 of 38

This structure maintains the individual channel position of the current transfer:
typedef struct td_ptd_map {
 u32 state; /* ACTIVE, NEW, TO_BE_REMOVED */
 u8 datatoggle; /*preserve the data toggle ATL/ISTL transfers*/
 //u16 total_bytes; /* Number of bytes for this PTD &header) */
 u32 ptd_bitmap; /* Bitmap of this ptd in HC headers */
 u32 ptd_header_addr;/* headers address of this td */
 u32 ptd_data_addr; /*data addr of this td to write in and read from*/
 /*this is address is actual RAM address not the
CPU address* RAM address = (CPU ADDRESS-0x400) >> 3 * */
 u32 ptd_ram_data_addr;
 u8 lasttd; /*last td , complete the transfer*/
 struct ehci_qh *qh; /* Queue head */
 struct ehci_qtd *qtd; /* qtds for this endpoint */
 struct ehci_itd *itd; /*itd pointer*/
 u32 grouptdmap; /* complete with error, then process all the tds
 in the groupmap */
} td_ptd_map_t;

These buffers are initialized when starting the Host Controller.

EHCI SCHEDULE

TD MAP STATE FOR
EACH SLOT

TD MAPPED
MEMORY STATE
FOR THE ENTIRE

BUFFER

TD - PTD MAP

STATE

DATA TOGGLE

PTD BITMAP

PTD HEADER
ADDRESS

...

BUFFER TYPE

ACTIVE PTDs

TOTAL PTDs

MAX PTDs

ACTIVE PTD BITMAP

PENDING PTD
BITMAP

MAP LIST

ATL SLOTS

INTL SLOTS

ISO SLOTS

ISP176x SCHEDULE

Fig 7. Mapping TD-PTD buffers.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 23 of 38

3.2.2.5 phci_hcd_start_controller(phci_hcd hcd)
This routine starts the Host Controller by setting the RUN/STOP bit in the USBCMD
register to RUN and waiting for the bit to set, indicating that the Host Controller is started.

CONFIGFLAG indicates the hardware to set the Host Controller in EHCI mode. Bit 0
informs the Host Controller to set the default port routing to the EHCI host.

3.2.2.6 Int phci_suspend
This routine is called when all the ports are set to suspend state to put the controller into
suspend state specified in the parameter.
Int phci_suspend (struct phci_hcd *dev, u32 state)

Parameters:
dev: Pointer to the ISP176x device structure (struct phci_hcd).
state: Integer value indicating suspend state.

Returns:
1: Success.
0: Failure.

3.2.2.7 Int phci_resume
This function is called before any device is set into resume state.
Int phci_resume (struct phci_hcd *dev, u32 state)

Parameters:
dev: Pointer to the ISP176x device structure (struct phci_hcd).
state: Integer value indicating resume state.

Return value:
1: Success.
0: Failure.

3.2.2.8 phci_stop
This routine sets the controller into stop state.
void phci_stop (struct phci_hcd *dev)

Parameters:
dev: Pointer to the ISP176x device structure (struct phci_hcd).

Return value: void.

3.2.2.9 phci_get_frame_number
This routine is used to schedule transfers in the memory region.
int phci_get_frame_number(struct phci_hcd *dev)

Parameters:
dev: Pointer to the ISP176x device.

Return value:
Current frame number.

3.2.2.10 phci_hub_control
This routine is used for root hub operations.
int phci_hub_control(struct phci_hcd *dev, u16 ReqType,

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 24 of 38

u16 wValue, u16 wIndex, u16 wLength
char *buff)

Parameters:
dev: Pointer to the ISP176x device structure (struct phci_hcd).
ReqType: Type of request sent to the hub. For example: clear feature, get
descriptor and set feature.
wValue: Type of operation under request. For example, the clear port feature may
have any one of these types: port enable, port suspend, port reset, and so on.
wIndex: Port number for the request type to port.
wLength: Length of data sent or received.
buff: Pointer to the buffer to send or receive data of wLength.

3.2.2.11 phci_irq
Interrupt handler for interrupts—SOF, ITL and ATL—are responsible for ATL, INTL and
ISO transfers.
Int phci_irq (struct phci_hcd *dev, struct pt_regs *regs)

Parameters:
dev: Pointer to the ISP176x device structure (struct phci_hcd).
regs: Pointer to the register.
phci_hcd *hcd: Pointer to the ISP176x Host Controller data structure (struct
phci_hcd *hcd). The structure has the following elements:

/*Host Controller Parameters sample */

typedef struct _phci_hcd {

 spinlock_t lock; /* async schedule support */

 struct ehci_qh *async;

 struct ehci_qh *reclaim;

 int reclaim_ready : 1, async_idle : 1;

 /* Periodic schedule support */

 unsigned periodic_size; /* Periodic list size */

 u32 *periodic; /* hw periodic table */

 dma_addr_t periodic_dma;

 unsigned i_thresh; /* uframes HC might cache */

 union ehci_shadow *pshadow; /*mirror hw periodic table*/

 int next_uframe; /*scan periodic,start here*/

 int periodic_sched;/* periodic activity count */

 struct usb_bus *self; /* hcd is-a bus */

 const char *product_desc; /* product/vendor string */

 const char *description; /* "ehci-hcd" etc */

 struct usb_device *otgdev; /*otg deice, with address 2*/

 struct timer_list rh_timer; /* drives root hub */

 struct list_head dev_list; /* devices on this bus */

 struct list_head urb_list; /*iso testing*/

 /*Hardware info/state*/

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 25 of 38

 struct resource *io_res;

 struct _phci_driver *driver;/* hw-specific hooks */

 struct isp176x_dev *dev;

 int irq; /* irq allocated */

 struct device *controller; /* handle to hardware */

 int state;/*state of the host controller*/

 Unsigned long reset_done[EHCI_MAX_ROOT_PORTS];

 ehci_regs regs;

 struct _isp176x_qha *qha;

 struct _isp176x_qhint *qhint;

 struct _isp176x_isoptd *isotd;

 /*called from the irq routine*/

 /*void (*tasklet)(struct _phci_hcd *hcd);*/

 struct tasklet_struct tasklet;

 void (*worker_function) (struct _phci_hcd* hcd);

 struct _periodic_list periodic_list[PTD_PERIODIC_SIZE];

}phci_hcd,*pphci_hcd;

3.2.3 Memory management interface
The ISP176x has 64 kB of memory on-chip that must be mapped on the CPU address.
The memory is shared between the CPU and the Host Controller to manage transaction
over the USB bus. The memory is 2 x double word aligned and managed using bit
enable to perform the 32-bit or 16-bit operation.

Memory is divided into two parts: one for the header and another for the payload. The
header contains the valid transfer descriptors that must be transferred on the bus. The
payload contains the data to be transferred to or received from the bus. The number of
TDs is limited to 32 for each type of transaction.

32 ISO HEADERS

32 INT HEADERS

32 BULK AND CONTROL HEADERS

60 kB PAYLOAD DATA MEMORY AREA USED FOR THE
TRANSFER

Fig 8. ISP176x memory.

To avoid contention on the Host Controller memory for ownership, the PTD and payload
memory shown in Table 2: is created for mutual exclusion.

Table 2: PTD and payload memory structure
Memory map CPU address Memory address

Registers 0000h to 0400h 0000h to 007Fh

ISO 0400h to 07FFh 0000h to 007Fh

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 26 of 38

Memory map CPU address Memory address

INTL 0800h to 0BFFh 0080h to 00FFh

ATL 0C00h to 0FFFh 0100h to 017Fh

Payload 8000h to FFFFh 0180h to 1FFFh

Skip Map: Each TD header corresponds to the status bit in this register. This bit is set by
the HCD to indicate to the hardware to skip the TD.

Done Map: Each TD header corresponds to the status bit in this register. The Host
Controller indicates to the driver that the transfer is completed and will be removed from
the Host Controller shared memory.

For each transfer, the memory is divided into blocks for static allocation. You can also
write a dynamic allocable memory manager.

The static allocation assigns appropriate blocks when requested by the HCD. The HCD
fills up the block using either the PIO or DMA method.

TD 1 LENGTH < 256 B

TD 2 LENGTH > 256 B < 1 kB

TD 3 LENGTH > 1 kB < 2 kB

TD 4 LENGTH > 2 kB

TD 5

...

TD n

ADD THE NEW ENDPOINT TD

TD POOL 256 B

TD POOL 1 kB

TD POOL 2 kB

TD POOL 4 kB

Fig 9. ISP176x memory management.

3.2.3.1 phci_hcd_mem_init
This routine initializes the available memory in various block sizes indicated and
predetermined, and preserves the physical address of the blocks in the memory
structure.
typedef struct isp176x_mem_addr {
 void *phy_addr; /* Physical address of the memory */
 void *virt_addr; /* after ioremap() function call */
 __u8 usage;
 __u32 blk_size; /*block size*/

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 27 of 38

 u8 blk_num; /* number of the block*/
 u8 used; /*used/free*/
}isp176x_mem_addr_t;

3.2.3.2 phci_hcd_mem_alloc
static void phci_hcd_mem_alloc(u32 size, struct isp176x_mem_addr *memptr, u32 flag)

Input:
u32 size: Size of the memory required.
struct isp176x_mem_addr *memptr: The structure to be filled.
u32 flag: Used for dynamic memory allocation.

Return value: void.

3.2.3.3 phci_hcd_mem_free
This function frees the memory based on allocation.
static void phci_hcd_mem_alloc(u32 size, struct isp176x_mem_addr *memptr, u32 flag)

Input:
u32 size: Size of the memory required.
struct isp176x_mem_addr *memptr: The structure to be filled.
u32 flag: Used for dynamic memory allocation.

Return value: void.

Once a transfer is completed, the buffer will be freed and can be used for the next
transfer.

3.2.4 Root hub and internal hub management
The ISP176x Host Controller of a USB bus is required to implement the root hub. The
operational register space contains port registers needed to manage the internal root hub
of a port.

The Host Controller traverses the EHCI schedules and encounters activities that result in
the Host Controller executing USB transactions. These transactions are transmitted
through enabled root ports to the attached downstream USB devices.

The port registers provide system software with the control and status information
required to manipulate the port according to Universal Serial Bus Specification Rev. 2.0.
The supported features include device detect, device connect, device disconnect, device
reset, port-power manipulation, and port-power management.

System software must provide an abstraction to the USB system software stack to allow
root hub ports to be manipulated by the system as if they were ports on an external hub.

The root hub can be managed as an on-chip hub. This needs creating pseudo
descriptors and enumerating the hub with the hub driver of the system because a usual
hub is enumerating and powering the ports.

The bus address, hub address and the port number in DW1 must be set to 0 for the high-
speed port. The root port is a high-speed port.

On the enumeration of the root hub, the ISP176x will detect a connection of the internal
hub on port 1, the only internal port. This detection is passed to the hub and the USB
core driver. The hub driver returns appropriate URB, enumerating the internal hub that
has three ports.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 28 of 38

The transfer URB then links the transfer schedules in the periodic and asynchronous
schedules. These schedules are traversed and scheduled by the Host Controller
software.

On enumeration of the internal hub, the polling on the root hub can be canceled because
this internal hub is always connected to the USB bus and cannot be disconnected. The
ports on the internal hub are high-speed USB ports, capable of low-speed and full-speed
transfers using the TT. The default transfer is high-speed.

3.2.4.1 phci_rh_call_control

When a control transfer arrives from the hub driver, this routine performs all pseudo
operations and maintains the internal hub.
static int phci_rh_call_control (phci_hcd *hcd, struct urb *urb);

Inputs:
phci_hcd *hcd: HCD structure.
struct urb *urb: USB request structure.

Return:
int: Completion status.

3.2.4.2 phci_rh_status_urb
The hub driver polls the root hub every 256 ms by using a timer to find the status change.
This routine manages transfer checks for the status change and reports to the hub driver.
static int phci_rh_status_urb (phci_hcd *hcd, struct urb *urb) ;

Inputs:
phci_hcd *hcd: HCD structure.
struct urb *urb: USB request structure.

Return:
int: Completion status.

3.2.4.3 phci_rh_urb_enqueue
Submit the URB to the root hub, depending on the URB request. It goes to either the
control pipe or the interrupt pipe.
static int phci_rh_urb_enqueue (phci_hcd *hcd, struct urb *urb);

Inputs:
phci_hcd *hcd: HCD structure.
struct urb *urb: USB request structure.

Return:
int: Completion status.

3.2.4.4 phci_rh_status_dequeue
Unlink the URB for the root hub.
static void phci_rh_status_dequeue(phci_hcd *hcd, struct urb *urb);

Inputs:
phci_hcd *hcd: HCD structure.
struct urb *urb: USB request structure.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 29 of 38

Return:
int: Completion status.

3.2.4.5 phci_rh_report_status
This is the root hub polling timer callback function. It checks whether the Host Controller
is running and reports the root hub status. This function suspends the polling of the root
hub once an internal hub for the ISP176x is detected.
static void phci_rh_report_status (unsigned long ptr);

Inputs:
phci_hcd *hcd: HCD structure.
struct urb *urb: USB request structure.

Return:
int: Completion status.

3.2.4.6 phci_rh_power_off
This checks the power of the root port.
static void phci_rh_power_off(phci_hcd *hcd);

3.2.4.7 phci_rh_status_data
Reports the status of the root hub port.
static int phci_rh_status_data (phci_hcd *hcd, char *buf);

Inputs:
phci_hcd *hcd: HCD structure.
struct urb *urb: USB request structure.

Return:
int: Completion status.

3.2.4.8 phci_rh_control
static int phci_rh_control (phci_hcd *hcd,u16 typeReq,u16 wValue,u16 wIndex, char*
buf,u16 wLength);

Inputs:
phci_hcd *hcd: HCD structure.
struct urb *urb: USB request structure.

Return:
int: Completion status.

3.2.5 Data transfer interface
This section provides an overview of data structures, macros and functions related to
data transfers on the bus. The setting up, submitting and processing of transfer requests
are also explained.

3.2.5.1 Transfer data structures and macros
The USB subsystem uses only one data structure called URB. This structure contains all
parameters to set up any USB transfer type. All transfer requests are asynchronously
sent to the USB core and the completion of the request is signaled through a callback
function.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 30 of 38

The URB structure contains elements common to all transfer types, marked with C.
Elements marked > are input parameters, M means mandatory and O means optional.
Elements marked < are return values. Elements marked T are transient parameters.

Input and output: all uncommon elements are marked on three columns that represent
control, interrupt and isochronous transfers. An X mark indicates that the element will be
used with the associated transfer type.

The URB structure may look confusing. There are, however, macros to set up correct
parameters.

3.2.5.2 Sample URB structure
typedef struct urb
{

void *hcpriv; // private data for host controller (don't care)
struct list_head urb_list; // list pointer to all active urbs (don't care)
>CO struct urb* next; // pointer to next URB
>CM struct usb_device *dev; // pointer to associated USB device
>CM unsigned int pipe; // pipe information
<C int status; // returned status
TCO unsigned int transfer_flags;

//USB_DISABLE_SPD|USB_ISO_ASAP|USB_URB_EARLY_COMPLETE
>CM void *transfer_buffer; // associated data buffer
>CM int transfer_buffer_length; // data buffer length
<C int actual_length; // actual data buffer length
<X-- unsigned char *setup_packet;// setup packet (control only)
T-XX int start_frame; // start frame (iso/irq only)
>--X int number_of_packets; // number of packets in this request (iso
only)
>-X- int interval; // polling interval (irq only)
<--X int error_count; // number of errors in this transfer (iso
only)
>XXX int timeout; // timeout in jiffies
>CO void *context; // context for completion routine
>CO usb_complete_t complete; // pointer to completion routine
>--X iso_packet_descriptor_t iso_frame_desc[0]; // optional iso descriptors

} urb_t, *purb_t;

3.2.5.3 Sample ISO packet structure
typedef struct
{
unsigned int offset; // offset to the transfer_buffer
unsigned int length; // expected length
unsigned int actual_length; // actual length after processing
unsigned int status; // status after processing
} iso_packet_descriptor_t, *piso_packet_descriptor_t;

3.2.5.4 Details of the URB structure

pipe [mandatory input parameter]
The pipe element is used to encode the endpoint number and properties. There are
macros to create an appropriate pipe value.

The following routines create a pipe for downstream (snd) or upstream (rcv) control
transfers to a given endpoint. Argument dev is a pointer to a USB device structure.
Argument endpoint is usually 0.

• pipe=usb sndctrlpipe(dev,endpoint)

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 31 of 38

• pipe=usb rcvctrlpipe(dev,endpoint)

The following routines create a pipe for downstream (snd) or upstream (rcv) bulk
transfers to a given endpoint. The endpoint is 1 <= endpoint <= 15, depending on active
endpoint descriptors.

• pipe=usb sndbulkpipe(dev,endpoint)
• pipe=usb rcvbulkpipe(dev,endpoint)

The following routines create a pipe for downstream (snd) or upstream (rcv) interrupt
transfer to a given endpoint. The endpoint is 1 <= endpoint <= 15, depending on active
endpoint descriptors.

• pipe=usb sndintpipe(dev,endpoint)
• pipe=usb rcvintpipe(dev,endpoint)

The following routines create a pipe for downstream (snd) or upstream (rcv) isochronous
transfers to a given endpoint. The endpoint is 1 <= endpoint <= 15, depending on active
endpoint descriptors.

• pipe=usb sndisopipe(dev,endpoint)
• pipe=usb rcvisopipe(dev,endpoint)

transfer buffer [mandatory input parameter]
This element is a pointer to the associated transfer buffer that contains data transferred
from or to a device. This buffer must be allocated as a nonpageable contiguous physical
memory block. Use void *kmalloc(size t, GFP KERNEL);.

transfer buffer length [mandatory input parameter]
This element specifies the size of the transfer buffer in bytes. For interrupt and control
transfers, the value must be less than or equal to the maximum packet size of the
associated endpoint.

The maximum packet size can be determined from wMaxPacketSize of an endpoint
descriptor. Bulk transfers larger than wMaxPacketSize are automatically split into smaller
portions.

complete [optional input parameter]
The USB subsystem asynchronously processes requests. This element allows specifying
a pointer to a caller supplied handler function that is called after the request is completed.
This handler is used to complete the caller specific part of the request as fast as
possible.

context [optional input parameter]
Optionally, a pointer to a request related context structure could be given.

transfer flags [optional input parameter and return value]
A number of transfer flags may be specified to change the behavior when processing the
transfer request.

USB disable SPD
This flag disables short packets. A short packet condition occurs if an upstream request
transfers less data than the maximum packet size of the associated endpoint.

USB URB early complete
A completion handler is called after the request is processed. Use this flag to call the
handler before other linked URBs are resubmitted.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 32 of 38

USB ISO ASAP
When scheduling isochronous requests, this flag informs the Host Controller to start the
transfer as soon as possible. If USB ISO ASAP is not specified, a start frame must be
given.

It is recommended that you use this flag, if isochronous transfers do not need to be
synchronized with the current frame number. The current frame number is an 11-bit
counter that increments every millisecond, which is the duration of one frame on the bus.

USB async unlink
When a URB must be cancelled, it can be done synchronously or asynchronously. Use
this flag to switch on asynchronous URB unlinking.

USB timeout killed
This flag is set by the Host Controller to mark the URB as killed by timeout. The URB
status carries the actual error that caused the timeout.

USB queue bulk
This flag is used to allow queuing for bulk transfers. Normally, only one bulk transfer can
be queued for an endpoint of a particular device.

Next [optional input parameter]
It is possible to link several URBs in a chain by using the next pointer. This allows you to
send a sequence of USB transfer requests to the USB core. The chain must be
terminated using a NULL pointer or the last URB must be linked with the first. This allows
to automatically reschedule a number of URBs to transfer a continuous data stream.

Status [return value]
This element carries the status of an ongoing or already finished request. After
successfully sending a request to the USB core, status EINPROGRESS = 0, indicating
the successful completion of a request. There exist a number of error conditions.

Actual length [return value]
After a request is completed, this element counts the number of bytes transferred. The
remaining elements of the URB are specific to the transfer type.

Bulk transfers
No additional parameters need to be specified.

Control transfers
Setup packet [mandatory input parameter]
Control transfers consist of two or three stages.

The first stage is the downstream transfer of the setup packet. This element takes the
pointer to a buffer containing the setup data. This buffer must be allocated as a
nonpageable contiguous physical memory block. Use void *kmalloc(size t, GFP
KERNEL.

The next stage is the data stage, and is followed by the status stage.

Interrupt transfers
Start frame [return value]
This element is returned to indicate the first frame number that the interrupt is scheduled.
Setting this value as -1 starts interrupt transfers as soon as possible.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 33 of 38

Interval [mandatory input parameter]
This element specifies the interval in milliseconds for the interrupt transfer. Allowed
values are 1 <= interval <= 255. Specifying an interval of 0 ms causes a one shot
interrupt, no automatic rescheduling is done. For interrupt endpoints, you can find the
interrupt interval as element bInterval of an endpoint descriptor.

Isochronous transfers
Start frame [input parameter or return value]
This element specifies the first frame number that the isochronous transfer is scheduled.
Setting the start frame allows to synchronize transfers to or from an endpoint. If the USB
ISO ASAP flag is specified, this element is returned to indicate the first frame number
that the isochronous transfer is scheduled.

Number of packets [mandatory input parameter]
The isochronous transfer requests are sent to the USB core as a set of single requests.
A single request transfers a data packet up to the maximum packet size of the specified
endpoint (pipe). This element sets the number of packets for the transfer.

Error count [return value]
After the request is completed, URB status is != -EINPROGRESS. This element counts
the number of erroneous packets. Detailed information about the single transfer requests
can be found in the isochronous frame descriptor structure.

Timeout [input parameter]
A timeout can be specified to automatically remove a URB from the Host Controller
schedule. If a timeout occurs, the transfer flag USB TIMEOUT KILLED is set. The actual
transfer status carries the USB status that caused the timeout.

ISO frame desc [mandatory input parameter]
This additional array of structures at the end of every isochronous URB sets up the
transfer parameters for every single request packet.

Offset [mandatory input parameter]
Specifies the offset address to the transfer buffer for a single request.

Length [mandatory input parameter]
Specifies the length of the data buffer for a single packet. If length is set to 0 for a single
request, the USB frame is skipped and no transfer will be initiated. This option can be
used to synchronize isochronous data streams.

Actual length [return value]
Returns the actual number of bytes transferred by this request.

Status [return value]
Returns the status of this request.

For the Host Controller to handle the URB, the following functions are used.

3.2.5.5 phci_hcd_submit_urb
Use the following routine to submit the transfer URB for the process that transfers the
data over the USB bus.
static int phci_hcd_submit_urb(struct urb *urb)

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 34 of 38

3.2.5.6 phci_hcd_submit_urb
Use the following routine to submit the transfer URB for the process that transfers the
data over the USB bus. This routine maps the transfer over multiple TDs and links them
for the transfer.
static int phci_hcd_submit_urb(struct urb *urb)

3.2.5.7 phci_hcd_completeurb
Once the transfer is completed, this routine is called to complete the URB transfer.
static void phci_hcd_completeurb(phci_hcd *hcd, struct urb *urb, struct pt_regs
*regs);

3.2.5.8 phci_hcd_urb_dequeue
The host calls this routine if it wishes to remove the URB mostly to abort the transfer.
This requires careful removal of the transfer from the schedule.
static int phci_hcd_urb_dequeue(phci_hcd *hcd, struct urb *urb, urb_priv_t *urb_priv)

4. OTG stack interface
This interfaces to the USB OTG driver and is used to control OTG port activities.

4.1.1 phci_register_otg
This function is used to register OTG driver notification functions to the ISP176x HCD.
The notification function is called on completing the OTG enumeration.
int phci_register_otg(phci_otg_data_t *otg_data)

Parameters:
otg_data: Pointer to the OTG driver registration information data structure
(phci_otg_data_t). The structure has the following elements:
typedef struct {
 void *priv_data;
 void (*otg_notif)(void *otg_priv);
 void *hc_priv_data;
} phci_otg_data_t;

priv_data: The OTG driver private data pointer. This pointer is used as an input
parameter for the OTG notification function.
otg_notif: The OTG notification function to send the OTG enumeration result.
hc_priv_data: The ISP176x HCD private data. The ISP176x HCD fills this field
when the registration is successful. This will be used as an input parameter for the
other HCD function calls.

Return value:
0 Successful registration of the OTG driver with the HCD.
<0 OTG driver registration has failed.

4.1.2 phci_unregister_otg
This function is used to deregister the OTG driver notification functions from the ISP176x
HCD.
void phci_unregister_otg(phci_otg_data_t *otg_data)

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 35 of 38

Parameters:
otg_data: Pointer to the OTG driver registration information data structure
(phci_otg_data_t).
Return value: None.

4.1.3 phci_otg_port_control
This function is used to control the OTG port activities through the virtual root hub portion
of the ISP176x HCD.
void phci_otg_port_control(void *priv, __u8 cmd, __u32 *data)

Parameters:
priv: Pointer to the ISP176x HCD private data. The OTG driver will get this pointer
during its registration with the HCD.
data: Pointer to the port control data. Table 3: shows the possible values of this
field.

Return value: None.

Table 3: Possible values of port control data
Value Description

OTG_PORT_OPEN_PORT Open OTG port for USB bus driver operations

OTG_PORT_GET_ENUM Get OTG port enumeration results

OTG_PORT_SUSPEND Suspend OTG port

OTG_PORT_DISCONNECT_PORT Disconnect OTG port for USB bus driver operations

OTG_PORT_OPEN_PORT_IMM Open OTG port immediately for USB bus driver
operations

5. Abbreviations

Table 4: Abbreviations
Abbreviation Description

API Application Programming Interface

ATL Acknowledged Transfer List

DMA Direct Memory Access

FSM Finite-State Machine

HCD Host Controller Driver

INTL INTerrupt List

ITL Isochronous (ISO) Transfer List

ISO ISOchronous

ISR Interrupt Service Routine

OS Operating System

OTG On-The-Go

PIO Parallel Input Output

PTD Philips Transfer Descriptor

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 36 of 38

Abbreviation Description

SOF Start-Of-Frame

TT Transaction Translator

URB USB Request Block

USB Universal Serial Bus

6. References
• Universal Serial Bus Specification Revision 2.0
• On-The-Go supplement to the USB2.0 specification Rev 1.0
• ISP1760 Hi-Speed Universal Serial Bus host controller for embedded applications

data sheet
• ISP1761 Hi-Speed Universal Serial Bus On-The-Go controller data sheet.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 7 April 2005 37 of 38

7. Disclaimers
Life support — These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status ‘Production’),

relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no
licence or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products
are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Application information — Applications that are described herein for any of
these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.

Philips Semiconductors AN10042
 ISP176x Linux Programming Guide

 © Koninklijke Philips Electronics N.V. 2005
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner. The information presented in this document does
not form part of any quotation or contract, is believed to be accurate and reliable and may
be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under
patent- or other industrial or intellectual property rights.

Date of release: 7 April 2005

Published in The Netherlands

8. Contents
1. Introduction ...3
1.1 ISP176x peripheral hardware..............................4
1.2 ISP176x host hardware.......................................4
1.3 ISP176x Hardware Access Layer5
1.4 ISP176x Host Controller Driver5
1.5 ISP176x Peripheral Controller Driver5
1.6 ISP176x OTG Controller driver5
2. Hardware Access Layer......................................5
2.1 Starting the Host Controller.................................5
2.2 Module management interface............................6
2.3 isp176x_hal_module_init6
2.4 ISP176x Controller Driver interface.....................7
2.5 Driver registration interface.................................7
2.6 Resource management interface8
2.7 I/O access Interface ..9
2.8 Kernel tracing interface12
2.9 Common structures...12
3. Host Controller interface13
3.1 Module management ..13
3.2 ISP176x host management service14
4. OTG stack interface ..34
5. Abbreviations ..35
6. References...36
7. Disclaimers ..37
8. Contents...38

	Introduction
	ISP176x peripheral hardware
	ISP176x host hardware
	ISP176x Hardware Access Layer
	ISP176x Host Controller Driver
	ISP176x Peripheral Controller Driver
	ISP176x OTG Controller driver

	Hardware Access Layer
	Starting the Host Controller
	Module management interface
	isp176x_hal_module_init
	ISP176x Controller Driver interface
	Driver registration interface
	Resource management interface
	I/O access Interface
	Kernel tracing interface
	Common structures

	Host Controller interface
	Module management
	ISP176x host management service

	OTG stack interface
	Abbreviations
	References
	Contents

